\qquad Period: \qquad problem SOIVing with LCM \& GCF
Determine whether you will need to find the LCM or GCF for each of the problems shown. CIRCLE THE WORD OR PHRASE THAT IDENTIFIES THIS FOR YOU. Show your work in the space provided and circle your final answer.

Problem	LCM or GCF	Work \& Answer	Apply it!
1. Frank is buying hot dogs for a class picnic. Hot dogs are sold in packages of 12. Buns are sold in packages of 8. What is the smallest number of hot dogs and buns Frank can buy to have an equal number of each?		How many packages of hot dogs does he	
need?			

Date:
Period:

Problem	LCM or GCF	Work \& Answer	Apply it!
6. Hetty is making identical gift baskets for the senior citizens center. She has 105 fidget spinners and 60 cans of Silly String. What is the greatest number of baskets that she can make using all of her supplies?			How many fidget spinners will be in each bag?
7. Volunteers are making sandwiches for a class picnic. They have 72 turkey slices, 48 cheese slices, and 96 tomato slices. What is the greatest number of sandwiches they can make if each sandwich has the same filling?			How many turkey slices will each sandwich get?
8. The $6^{\text {th }}$ grade math teachers are working out math problem. Each teacher has the following number of problems per page: Ms. Balser-6, Ms. de Give - 8, and Mr. Hokkanen - 12 They all start working at the same time. How long will it be before all 3 teachers start a new page at the same time?			How many problems did Ms. Balser complete?
9. Samantha has two rolls of streamers to decorate for her party. The hot pink roll is 72 inches long and the neon green roll is 90 inches long. If she wants to make all the streamers the same length, what is the longest each streamer can be?			How many pieces of neon green streamers will she get?

Higher order thinking:

10. What is the greatest common factor of 9 and 16 ?
11. Why is the ladder method not helpful when finding the least common multiple of 3 and 5 ?
\qquad
\qquad
\qquad

Persevere in Problem Solving: Use the digits 0 to 9, no more than one time each, to fill in the boxes and make a true statement. You may use a calculator to help you find your answer.

Factor: \square
Factor: \square
Multiple: \square

